

OLGA: On-Line GAming over Heterogeneous Platforms
Thanks to Standard Scalable Content

Francisco Morán1, Marius Preda2, Gauthier Lafruit3, Paulo Villegas4 and Robert-Paul Berretty5

1 Universidad Politécnica de Madrid 2 Institut National des Télécommunications,
3 Interuniversitair Micro Electronica Centrum 4 Telefónica I+D 5 Philips

1 Francisco.Moran@upm.es 2 Marius.Preda@int-evry.fr 3 Gauthier.Lafruit@imec.be
4 Paulo@tid.es 5 Robert-Paul.Berretty@philips.com

Abstract

Most current multi-player 3D games can only be
played on a single dedicated platform such as PCs,
video-consoles, or (very recently) cell-phones, requir-
ing specifically designed content and inter-terminal
communication over a predefined network. To over-
come these limitations, the OLGA (On-Line GAming)
consortium has devised a framework to develop real
distributive, multi-player 3D games where scalability
at the level of content, platforms and networks is ex-
ploited to achieve the best complexity vs. quality and
load-balancing trade-offs given the distributive re-
sources available over the end-to-end delivery chain.
Additionally, standardized content representation and
compression formats (XML, MPEG-4, JPEG 2000) are
used in OLGA’s framework, enabling easy deployment
over existing infrastructure, while keeping hooks to
well-established practices in the game industry.

1. Introduction

OLGA (www.ist-olga.org) is a research project par-
tially funded, from April 2004 to September 2006, by
the European Commission under FP6-IST. Its full
name is “A unified scalable framework for On-Line
GAming”, and it targets technologies for multi-player
3D games, which nowadays often rely on dedicated/
proprietary technological solutions (e.g., massively
parallel, brute-force grid computing) or a priori scaling
down paradigms to the weakest node in the infrastruc-
ture. This presents problems for:
• game developers, who cannot provide the adequate

quality for every platform/network combination;
• platform builders, who want to be able to diversify

their platform characteristics while still being able
to allow for game playing;

• above all, end-users, who want to be able to roam
attractive games in different usage contexts, inside

and outside the home, without “being trapped” into
a single platform/network configuration.
With respect to the latter, the main inherent differ-

ence/heterogeneity among PCs (Personal Computers)
is their rendering power, assuming that a broadband
Internet connection is available. However, OLGA’s set
of terminals includes also CPs (Cell Phones) using
Symbian OS v8, which are not only limited in terms of
3D graphics acceleration, but perhaps even more im-
portantly in terms of bandwidth, as they are linked to
the Internet through 3G connections — at best!

The OLGA consortium has therefore targeted the
roaming of on-line 3D games over heterogeneous net-
works and terminals thanks to the efficient and stan-
dardized compression of the game content, and the
distribution of the game servers and network architec-
ture, allowing adaptation by:
• providing a framework for developing scalable 4D

game content that can be adaptively streamed to a
variety of terminals over heterogeneous networks,

• using (and improving, whenever possible!) de jure
international standard coding formats such as the
ones produced by MPEG, notably MPEG-4’s AFX
(Animated Framework eXtension) [12].
Thanks to the scalable 4D content authoring and

compression tools produced within OLGA it is possi-
ble to:
• use popular commercial 3D modelling and anima-

tion software packages such as 3ds Max and export
MPEG-4-compliant scalable 4D content;

• analyse existing 3D models described by classic
geometry modelling paradigms (e.g., triangular
meshes), or 2D textures coded with older standards,
and adapt that content for hierarchical transmission
and rendering to permit scalability;

• attach the appropriate semantics to a generic articu-
lated object hierarchy that will be used to continu-
ously tune the animation resolution.

Figure 1: Screen shots from both the PC and CP versions of GOAL, OLGA’s game.

In particular, thanks to the OLGA framework it is
possible to render the same textured 4D content at
wildly different qualities and frame rates, according to
each particular network and terminal profile: see
Figure 1. Besides, game the players can publish their
own 4D content for its use within the game, so
OLGA’s tools are not only provided to game design-
ers, but also to end users.

Within this document, Section 2 explains how scal-
able coding can be exploited for adapting the execution
time in a specific terminal, under excellent quality vs.
bit-rate vs. memory vs. execution time trade-offs of the
3D geometry, textures and animation. Section 3 com-
ments on other main goals of OLGA: to design and
implement a scalable game platform (an infrastructure
consisting of both servers and network), and to provide
a set of terminals to validate OLGA’s technology by
implementing on them a multi-platform, multi-player
game test bed, named GOAL. Finally, Section 4 con-
cludes our presentation.

2. Standard scalable 4D content

Only a few years ago, high quality 3D graphics
were a crucial asset for making a computer game suc-

cessful. Nowadays, they are practically taken for
granted: for current players, 4D content looking great
is not a bonus but nearly a must. And creating compel-
ling 4D objects and characters is a very time-
consuming task even when that content is not scalable.

A key ingredient of OLGA is its software toolset
for content creation, conversion and compression,
which provides game designers (as well as end users)
with flexible solutions to create scalable 4D content
from scratch, or to recycle already existing 4D content
to have it be scalable, and to compress it efficiently.
Scalable (off-line) coding is of the utmost importance
for OLGA to enable the continuous adaptation (at run-
time and under constrained system resources) of the
4D content parameters, so that the best trade-off be-
tween instantaneous 3D rendering quality and anima-
tion speed can be achieved. Such adaptation is possible
thanks to progressive bit-streams that can be stripped
through packet selection mechanisms for view-
dependent decoding (or even streaming) scenarios, in
which only the visible portions of a 3D object geome-
try and texture are transmitted and decoded at the ap-
propriate quality. The animation quality can also be
scaled by performing only those transformations yield-
ing a visible effect for the player.

As stated in the introduction, another key ingredient
of OLGA, besides scalability, was compliance to the
maximum possible extent to international standards.
MPEG-4 was chosen because it already featured the
following tools for scalable 4D content when OLGA
started:
• 3D geometry: among its several tools targeting the

compression of polygonal meshes, we chose the one
based on WSSs (Wavelet Subdivision Surfaces),
known as “WaveSurf” [12], [16];

• 2D textures: VTC (Visual Texture Coding) [10] is
also wavelet-based, as is JPEG 2000 [8], which is
not part of MPEG-4, but that MPEG-4 now sup-
ports as a format for textures thanks to a proposal
from the OLGA consortium, and that was chosen
for OLGA after a comparative study against VTC;

• animation: BBA (Bone-Based Animation) [12],
permits to animate generic articulated characters
based on the “skeleton and skin” paradigm.

2.1. 3D geometry

Several 3ds Max plug-ins have been implemented
that enable an artist to automatically simplify an arbi-
trary connectivity 3D mesh, remesh it to have subdivi-
sion connectivity, and code it in a scalable manner:
• Our 3D mesh simplification 3ds Max plug-in, olga-

QAttSimp, is based on the QEM (Quadric Error
Metrics) technique by Garland [6] and yields sig-
nificant improvements over 3ds Max’s native Opti-
mize: the geometry obtained is much more efficient
(in terms of triangle count for a given approxima-
tion error) and the texture coordinates are correctly
handled. Compared to the MultiRes modifier that
comes also standard with 3ds Max, olgaQAttSimp is
very efficient when it comes to smooth content, and
roughly equivalent for “not-well-rounded” shapes.
But, in all cases, it allows the artist to control more
closely the mesh decimation and obtain more sub-
jectively faithful final results by selecting certain
regions to be preserved. A simplificator software
module has also been developed based on olga-
QAttSimp, and integrated in the LCSs (Local Con-
tent Servers: see Section 3) to allow run-time vertex
removal.

• The coding can be compliant to the WaveSurf tool
already in MPEG-4’s AFX, or follow the PLTW
(Progressive Lower Trees of Wavelet coefficients)
technique [1], explained below and proposed to
MPEG for its adoption in a future Amendment of
AFX. The two corresponding decoders (MPEG-4-
compliant and PLTW-based) are both integrated in
OLGA’s software framework for the PC platform.
As for the CP platform, only the PLTW-based de-

coder has been ported to Symbian OS v8, since it
has less memory requirements than MPEG-4’s
WaveSurf tool.

2.1.1. Geometry quality/bit-rate/memory trade-off.
Once a 3D shape is modelled as a WSS, it is fit for
multi-resolution coding. Our research in this field fo-
cussed on new methods that could be more suitable for
resource-limited devices than the SPIHT-based ones,
like the WaveSurf tool in MPEG-4’s AFX [12]. For a
decade already, the SPIHT (Set Partitioning In Hierar-
chical Trees) technique [19] has been the reference
against which to compare other coding techniques
based on the wavelet transform. It was originally de-
signed to code scalar wavelet coefficients, but has been
extended to handle 3D coefficients, such as the ones
resulting from colour images or 3D surfaces modelled
thanks to WSSs [13], [16]. The problem of SPIHT is
that, although its bit-streams are SNR scalable, they
are not spatially scalable, and cannot be easily parsed
according to a given maximum resolution (i.e., number
of pixels or triangles) or LOD (Level Of Detail) toler-
ated by the decoder. There is little point in encoding a
3D mesh with thousands of triangles if the CP that
must render it can barely handle hundreds. Further-
more, from the memory viewpoint, having a perfectly
SNR scalable bit-stream that may have bits corre-
sponding to details of LOD 3 before those of LOD 1
makes also little sense, as the decoding process alone
will completely eat up all the CP resources: even if
memory is not allocated for the triangles of LOD 3
(which will never be rendered), their detail trees must
be created to follow the SPIHT algorithm.

The main novelty of the PLTW technique [1] is that
the resulting bit-stream does not impose on the less
powerful decoders the need of building detail trees as
deep as required by the maximum LOD encoded, be-
cause the wavelet coefficients are sent on a per-LOD
basis, thus achieving “local SNR scalability” within
“global spatial scalability”. With PLTW, the set of
coefficients is also hierarchically traversed, but they
are scanned in LODs, which yields a spatially scalable
bit-stream. The decoder first receives all the coeffi-
cients corresponding to a LOD and, only when it has
finished reading them, it proceeds (if it has enough
resources) with those from the next. However, with the
introduction of bit-plane encoding, bits from each
LOD are ordered in such a way that the first to arrive
are the ones that contribute more to lower the recon-
struction error, while bits from negligible coefficients
arrive last. A comparison of our PLTW coder vs. two
other SPIHT-based coders is illustrated by Figure 2,
which plots, for two different 3D models, the rate dis-
tortion curves for: the PLTW coder, which does in-

clude AC (Arithmetic Coding) as a final step; a version
of the SPIHT algorithm with AC; and the “WaveSurf”
tool of MPEG-4, which also uses the SPIHT, but with-
out AC. Except at very low rates, where the PLTW is
still reconstructing upper LODs and does not benefit
from the smoothing effect of subdivision (while its
competitors do), PLTW always results in higher
PSNRs for the same bit-rate. It is also noticeable how
none of the SPIHT-based coders is able to reach the
same PSNR as the PLTW coder even employing 160%
(SPIHT-AC) or 330% (MPEG-4) of the bits used by
PLTW for the same quantisation set of values. The
poor results of the MPEG-4 “WaveSurf” coder are
mostly due to the overhead introduced to support view-
dependent transmission of coefficient trees.

0 2 4 6 8 10 12 14
20

30

40

50

60

70

80

bits/vertex

P
S

N
R

PLTW
SPIHT-AC
MPEG-4

0 1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

bits/vertex

P
S

N
R

PLTW
SPIHT-AC
MPEG-4

Figure 2: PLTW vs. SPIHT and MPEG-4’s “Wave-
Surf” for the Max Planck and bunny models.

2.1.2. Geometry quality/bit-rate/execution time
trade-off. The use of compressed, multi-resolution
content enables the adaptation of its complexity (and
hence also its visual quality) to the available band-
width and terminal resources. WSSs permit to code the
shape of a 3D model in a multi-resolution manner with
very good compression, but require a large CPU over-
head for a fine-grained, on-the-fly control of the con-
tent complexity in execution time regulated applica-
tions such as networked, interactive 3D games. In fact,
the CPU overhead for controlling the execution time
with MPEG-4’s “WaveSurf” tool is sometimes as large
as the 3D graphics rendering execution time itself [22].
Moreover, typical implementations of WSSs multiply
by four the number of triangles in every subdivision
step, which enables only very discrete LOD manage-
ment, and therefore yields abrupt and often disturbing
quality changes while only supporting coarse-grained
adaptation to a target execution time. Besides improv-
ing the compression efficiency and the adequacy to
weak terminals with the PLTW technique, we have
introduced some add-ons to enable a low-complexity,
yet efficient fine-grained quality/execution time trade-
off in execution time control.

To achieve this target, the MPEG-4 WSS mesh re-
gions are progressively decoded in a continuous LOD
fashion, by subdividing only the important regions of

the geometry. The importance and order for subdivid-
ing the triangles is given by their impact on the error to
the target mesh, i.e. the triangles that decrease this
error the most are subdivided first [15].

These non-uniformly subdivided WSS meshes al-
low a fine-grained control of the resolution of the ge-
ometry, resulting in small variations of the visual qual-
ity while achieving a target execution time. With spe-
cial subdivision platform mapping techniques using
LOD-based moving windows [21], the complexity of
the subdivision control is largely reduced, resulting in
an overhead of only a small percentage in the final
decoding and rendering execution time for two differ-
ent platforms: a high-end PC and a low-end CP [22].

In order to actually steer the execution time control,
the execution time, and especially the rendering time,
should be estimated for a large range of triangle budg-
ets. We have used previously reported performance
models for the software [20] and hardware [23] render-
ing pipelines, according to which the most important
parameters are the number V of processed vertices (for
the vertex processing) and the number F of fragments
(for the rasterisation); additional parameters important
for the software model are the number S of spans and
the number T of visible triangles. The coefficients of
the performance model are derived with an off-line
calibration procedure that first measures on the device
the rendering time for many different objects with
different sizes (F) and complexity (V and T), and then
computes the average values of the coefficients cα
(α ∈ {T, F, S}) with multi-linear regression analysis.

2.2. 2D textures

After carrying out a comparative study between
JPEG, JPEG 2000 and MPEG-4’s VTC with respect to
the considered criteria and desired functionalities
within OLGA, the JPEG 2000 technology was se-
lected, and several tools have been developed:
• A plug-in enables 3ds Max to import and export

JPEG 2000-compliant textures (at the time of writ-
ing, Autodesk had just released 3ds Max 9, which
did not support natively JPEG 2000 yet).

• Tools enabling view-dependent texture streaming
thanks to JPEG 2000 and JPIP (JPEG 2000 Internet
Protocol), in which a bit-stream packet selection
mechanism takes the user’s viewpoint information
into account. Implementations have been made for
both the PC and CP platforms, and both the
JPEG 2000 and JPIP decoders were optimised to-
wards their usage in a 3D graphics texture context,
and extended with additional control tools tailored
to a view-dependent texture streaming scenario. The

JPIP cache mechanism is adapted to minimise the
memory usage in the CP platform.

• A JPEG 2000 bit-stream packet selector has been
integrated in the simplificator module running on
LCSs, that supports resolution scaling and bit-plane
removal. The LOD selection takes into account both
the available bandwidth between LCS and terminal,
and the terminal screen resolution.
But OLGA’s most important contribution with re-

spect to textures has little to do with JPEG 2000 (ex-
cept for having succeeded at having MPEG-4 support
it as one of its native image formats), as in fact the
work described above has mostly consisted in imple-
menting and porting already existing algorithms and
software. At least conceptually, OLGA’s main contri-
bution has been detecting drawbacks in the current IFS
(Indexed Face Set) tool of MPEG-4, and defining the
so-called “IFS++” format for 4D meshes with enriched
vertex attributes such as multiple texture coordinates
and bone-vertex influence coefficients. This activity
has led to another MPEG proposal, which will hope-
fully be included as well in a future Amendment of
AFX.

2.2.1 Geometry + 2D texture quality/bit-rate trade-
off. Besides the execution time variation with the plat-
form and content parameters [20], the linearity of the
cost with the object parameters has also been observed
in the bit-rate of the textured MPEG-4 objects: with a
regression coefficient of 93% measured over 60 ob-
jects, the original MPEG-4 file size s decreases
roughly bi-linearly with decreasing JPEG 2000 texture
LOD (with negative slope m1) and decreasing object
mesh LOD (with negative slope m2).

Small file sizes s with large (absolute values of) m1
and m2 correspond to small bit-rates that decrease very
rapidly with decreasing LOD: the corresponding ob-
jects representing only a small fraction of the total bit-
rate at all LOD levels, they have low priority to be
scaled for global (over all objects) bit-rate adaptation.
On the other extreme, large s with small m1 and m2
correspond to large bit-rates that decrease very slowly
with decreasing LOD, hence representing barely any
opportunity of down-scaling for global bit-rate adapta-
tion. Consequently, large s with large m1 and/or m2 are
the most appealing candidates for bit-rate adaptations:
starting from a large full resolution bit-rate contribu-
tion, they scale very well by adjusting the texture
and/or mesh LOD.

Together with the improvements introduced by the
PLTW and BBA tools, a global quality/bit-rate/execu-
tion time control can be obtained over all objects. The
precise details of this intelligent global adaptation are
beyond the scope of this paper, since it is mainly re-

lated in finding heuristics for approximately solving an
NP-hard knapsack problem: the reader is referred to
[3], [17] for a framework of 3D inter-object adaptation
using some tabular characteristics of each object.

2.3. Animation

Virtual characters are the most complex objects in a
3D game, and a special interest was foreseen with
respect to them from the initial stages of OLGA. In-
deed, OLGA’s main vision, using scalable content
within a standardized framework, was applied for vir-
tual characters as well. We used as a basis the BBA
specification, which defines a complete framework for
representing and animating skinned models. In addi-
tion to the compression of the object graph, based on
MPEG-4 BIFS (BInary Format for Scenes) [9], BBA
defines a compressed representation of the animation
parameters: bone transforms, muscle deformations and
morphing weights.

Figure 3: Some OLGA models loaded in the

PC (top) and CP (bottom) versions of the
3D Graphics MPEG-4 player.

To visualize MPEG-4 content for both PC and CP
terminals (see Figure 3), we selected a small number of
the scene graph nodes defined in the BIFS specifica-
tion, ensuring to represent static and animated textured
3D objects. Starting from GPAC [14], an open source
BIFS decoder, we derived a simplified BIFS decoder
by implementing only the selected nodes. To allow
texture mapping, we plugged-in both JPEG and
JPEG 2000 decoders. To support animation, we opti-
mized the initial BBA decoder we had developed for

PC and also ported it to Symbian OS v8 for the se-
lected CP (Nokia 6630). Finally, we developed the
rendering layer by using DirectX 9 for PC and
OpenGL ES for CP.

2.3.1. Animation quality/bit-rate trade-off. To repre-
sent compactly the data required by the animation of
textured 3D models (varying vertex attributes: essen-
tially spatial coordinates but also normals or texture
coordinates), some kind of redundancy in the anima-
tion is usually exploited: either temporal, and then
linear or higher order interpolation is used to obtain the
value of the desired attribute between its sampled
value at certain key frames; or spatial, and then nearby
vertices are clustered and a unique value or transform
is assigned to each cluster. MPEG standardized an
approach for compression of generic interpolated
data [9], able to represent coordinates and normal in-
terpolation. While generic, this approach does not
exploit the spatial redundancy. Concerning avatar ani-
mation, one of the most used animation content for
games, ISO/IEC published in 1999 [10] and 2000 [11],
under the umbrella of the MPEG-4 specifications, a set
of tools named FBA (Face and Body Anima-
tion) allowing compression at very low bit-rates. The
limitations of FBA consist mainly in the rigid defini-
tion of the avatar and the difficulty to set up the pro-
posed deformation model. Some other methods re-
ported in the literature are: quantization of the motion
type [5], data transmission scalability by exploiting the
3D scene structure [7], and quantization to achieve
data compression and incorporate intelligent exploita-
tion of the hierarchical structure of the human skeletal
model [4]. At the time the OLGA project started, we
were in the final stage of standardizing BBA, an exten-
sion of FBA within MPEG-4’s AFX.

BBA allows to represent animated, generic 3D ob-
jects based on the skin and bones paradigm, and to
transmit the animation data at very low bit-rates by
exploiting both the temporal and spatial redundancies
of the animation signal. Within OLGA, we addressed
the terminal/network adaptation, compression and
rendering of BBA-based content. We considered the
adaptation of animated content at two levels: geometry
simplification constrained by dynamic behaviour [18]
and animation frame reduction. The dynamic behav-
iour was expressed as constraints used to parameterise
the well-known mesh simplification QEM technique.
We introduced a weighting factor to specify how a
given set of bones influences the simplification proce-
dure. The biomechanical characteristics (i.e., the rela-
tionships between skin and bones) were directly ex-
ploited to constrain and control the simplification pro-
cedure. We applied the developed algorithm to OLGA

animated objects, previously converted into MPEG-4-
compliant skinned models. Figure 4 shows the com-
parative results of animated model simplification for
the developed approach, called AC-QEM, vs. plain
QEM.

Decoding and rendering animation data on small
memory devices such as CPs requires server-side ani-
mation adaptation. Our approach was to reduce the
number of the animation key frames so that the CP
must only store a small quantity of information and use
temporal interpolation. Animation simplification based
on frame reduction was achieved by considering a
progressive approach. Given an original animation
sequence of n frames, to obtain a simplified sequence
with m frames (m < n) approximating better the origi-
nal curve, one has to minimise the area between the
original curve and the reconstructed one. Considering
this condition for all bones (or the subset of extreme
bones), the optimisation problem becomes difficult to
solve. To overcome the complexity, we adopted an
incremental approach: for each pair of three frames
and for each extreme bone, we compute the area be-
tween the original signal and the one reconstructed by
linear interpolation. We sum these areas for all the
extreme bones and the minimum of the sums indicates
the frame that has to be removed. We repeat the algo-
rithm until the number of removed frames equals n –
 m. After frame reduction, a new BBA stream is ob-
tained by encoding the m frames, and indicating for
each frame the number of intermediate frames to be
obtained by interpolation on the terminal.

QEM-simplified model
(491 vertices)

AC-QEM-simplified model
(497 vertices)

Figure 4: AC-QEM vs. QEM:
qualitative results for the dragon model.

2.4. Complete 4D scene exporting in MPEG-4

Finally, three 3ds Max plug-ins have been released
that are able to export whole scenes containing several
4D objects: the first exports fully MPEG-4-compliant

textual (“*.xmt”) and binary (“*.mp4”) files; the sec-
ond exports MPEG-4-compliant textual (“*.txt”) for
animated characters: object graph definition and ani-
mation data; and the third outputs bit-streams that are
not yet fully MPEG-4-compliant in that they follow
OLGA’s IFS++ format and the PLTW-based coding of
WSSs if the user so wishes.

3. Servers, network and terminals

The work related to servers and networks com-
prised the design, development and testing activities
for the integration of the game test bed versions with
the various versions of the network architecture. Both
the PC and CP clients communicate and authenticate
with the central lobby server, which manages the game
logic servers deployed in the network. Both the PC and
CP clients communicate and authenticate with a central
lobby server, which manages a distributed network of
game logic servers, called ZGSs (Zone Game Servers),
and content adaptation and delivery servers, called
LCSs (Local Content Servers). Load balancing and
recovery mechanisms for this distributed network of
servers were implemented and successfully tested. The
game logic server has basic gaming functionality and
can handle non-player characters, both static and dy-
namic content. Instead of using a completely central-
ized solution, or one with a grid of homogeneous serv-
ers, we decided to have many heterogeneous zone
game servers and local content servers, potentially
hosted at the most powerful PCs of the players them-
selves. This allows a high degree of network scalabil-
ity against the number of clients.

As for the terminals, they range from high-end gam-
ing PCs to laptops but, more importantly, also mobile
terminals have been used within the project: GOAL is
available on CPs based on Symbian OS v8 and sup-
porting J2ME, notably the Nokia 6630. Game logic
was implemented on both platforms, and decoders for
the simplified content downloaded from the network
are integrated in both versions of the game:
• PC: Special attention has given to the final aspect

of 3D gaming content. To make the game experi-
ence more immersive, we have endowed some ter-
minals with auto-stereoscopic 3D displays. Multiple
images associated to different viewpoints could be
rendered on the device, but this solution is not op-
timal in terms of bandwidth or computational com-
plexity. Instead, we render only one viewpoint and
provide the depths information that is available in
the z-buffer of the GPU to the 3D display; then, a
dedicated processor renders the desired viewpoints
at high quality [2].

• CP: A part of the software is programmed in Java,
and the content decoders are programmed in Sym-
bian, the Symbian framework being connected
through a socket with the Java game engine. Ren-
dering of the final graphics is done in software on
the ARM embedded in the OMAP processor of the
Nokia 6630. In fact, the OLGA consortium was the
first to report a fully functional application render-
ing MPEG-4’s AFX content on a Symbian OS CP.
Besides, as OLGA partners are consistently provid-
ing input to the MPEG-4 standardisation process,
the project results will be available on any other fu-
ture MPEG-4-compliant platforms, breaking open
the 3D gaming market on mobile devices.

4. Conclusions

Today’s multi-player 3D games often rely on dedi-
cated/proprietary technological solutions for their serv-
ers (e.g., massively parallel, brute-force grid comput-
ing), and scale down content a priori, according to the
bandwidth or rendering power of the “weakest” node
in the infrastructure. The OLGA (On-Line GAming)
consortium has opted for a completely different para-
digm: exploiting the scalability at the level of content,
platforms and networks, possibly adapting the content,
network and processing load to the distributive re-
sources available over the end-to-end delivery chain.
OLGA’s 4D (animated 3D) content is not stored lo-
cally on one single server or local storage medium
(e.g., DVD), but is rather distributed over a multitude
of servers spread all over the network with adequate
load-balancing and fault-tolerance policies, and possi-
bly hosted at the most powerful PCs of the players
themselves!

The 4D content is actively pushed from the avail-
able servers to the gaming terminals but, since
OLGA’s 4D content authoring and compression tools
are provided to end users as well as to game designers,
the players can develop and publish their own content,
which then becomes part of the persistent world, and
benefits from OLGA’s standardised framework for
adapting scalable content to the varying processing and
bandwidth capacities of a heterogeneous infrastructure,
and to the very different rendering power of heteroge-
neous terminals. OLGA’s 4D content authoring and
compression tools do not impose constraints on the
content complexity: game developers and players are
free in their creativity, and OLGA’s tools take care to
adapt to any circumstances — not the other way
around, as is usually the case…

Summarising, we have managed to integrate a chain
of content conversion, transmission and rendering
technologies into a heterogeneous infrastructure and

terminal set, demonstrating real-time interactive 4D
content adaptation. We have developed a distributive
multi-player 4D game but, more importantly, we have
developed a framework to develop distributive multi-
player 4D games (or other multimedia applications
with heavy and highly variable bandwidth and render-
ing requirements), and our framework hooks to a com-
plete toolkit of standardised content representation and
compression formats (XML, MPEG-4’s AFX,
JPEG 2000), enabling easy deployment over existing
infrastructure, while not impeding well-established
practices in the game development industry.

5. References

[1] M. Avilés, F. Morán and N. García: “Progressive Lower
Trees of Wavelet Coefficients: Efficient Spatial and SNR
Scalable Coding of 3D Models”, Proceedings of PCM (Pa-
cific-rim Conference on Multimedia), LNCS (Lecture Notes
in Computer Science) vol. 3767, p. 61-72, Springer, Novem-
ber 2005.
[2] R.-P. M. Berretty, F. J. Peters and G. T. G. Volleberg:
“Real Time Rendering for Multiview Autostereoscopic Dis-
plays”, Proceedings of Stereoscopic Displays and Applica-
tions Conference, SPIE vol. 6055, p. 208-219, January 2006.
[3] J. Bormans, N. Pham Ngoc, G. Deconinck and G. La-
fruit: “Terminal QoS: Advanced Resource Management for
Cost Effective Multimedia Applications”, chapter of “Ambi-
ent Intelligence: Impact on Embedded System Design”,
p. 183-201, Kluwer, 2003.
[4] S. Chattopadhyay, S.M. Bhandarkar and K. Li: “Virtual
People & Scalable Worlds: Efficient Compression and De-
livery of Stored Motion Data for Virtual Human Animation
in Resource Constrained Devices”, Proceedings of VRST
(Virtual Reality Software and Technology) Symposium,
p. 235-243, ACM, November 2005.
[5] M. Endo, T. Yasuda and S. Yokoi: “A Distributed
Multi-User Virtual Space System”, Computer Graphics and
Applications, vol. 23, nr. 1, p. 50-57, IEEE, January 2003.
[6] M. Garland and P. S. Heckbert, “Surface Simplification
Using Quadric Error Metrics”, Proceedings of SIGGRAPH
Conference, p. 209-216, ACM, August 1997.
[7] T. Hijiri, K. Nishitani, T. Cornish, T. Naka and S. Asa-
hara: “A Spatial Hierarchical Compression Method for 3D
Streaming Animation”, Proceedings of Web3D-VRML
Symposium, p. 95-101, ACM, February 2000.
[8] ISO/IEC JTC1/SC29/WG1, a.k.a. JPEG (Joint Photo-
graphic Experts Group): “Standard 15444-1”, a.k.a.
“JPEG 2000 Part 1: Core coding system”, ISO, 2004.
[9] ISO/IEC JTC1/SC29/WG11, a.k.a. MPEG (Moving
Picture Experts Group): “Standard 14496-1”, a.k.a.
“MPEG-4 Part 1: Systems”, ISO, 1999.
[10] ISO/IEC JTC1/SC29/WG11, a.k.a. MPEG: “Standard
14496-2”, a.k.a. “MPEG-4 Part 2: Visual”, ISO, 1999.
[11] ISO/IEC JTC1/SC29/WG11: “Standard 14496-2/
AMD1”, a.k.a. “MPEG-4 Part 2: Visual, Amendment 1:
Visual extensions”, ISO, 2000.

[12] ISO/IEC JTC1/SC29/WG11: “Standard 14496-16”,
a.k.a. “MPEG-4 Part 16: Animation Framework eXtension
(AFX)”, ISO, 2004.
[13] A. Khodakovsky, P. Schröder and W. Sweldens: “Pro-
gressive Geometry Compression”, Proceedings of SIG-
GRAPH Conference, p. 271-278, ACM, July 2000.
[14] J. Le Feuvre: “GPAC”, available on-line below
“http://gpac.sourceforge.net./”.
[15] A.W.F. Lee, W. Sweldens, P. Schröder, L. Cowsar and
D. Dobkin: “MAPS: Multiresolution Adaptive Parameteriza-
tion of Surfaces”, Proceedings of SIGGRAPH Conference,
p. 95-104, ACM, July 1998.
[16] F. Morán and N. García: “Comparison of Wavelet-
Based 3D Model Coding Techniques”, Transactions on Cir-
cuits and Systems for Video Technology, vol. 14, nr. 7,
p. 937-949, IEEE, July 2004.
[17] N. Pham Ngoc, G. Lafruit, J. Mignolet, S. Vernalde, G.
Deconinck and R. Lauwereins: “A Framework for Mapping
Scalable Networked Multimedia Applications on Run-Time
Reconfigurable Platforms”, Proceedings of ICME (Interna-
tional Conference on Multimedia and Expo), vol. 1, p. 469-
472, IEEE, July 2003.
[18] M. Preda, S. Tran and F. Prêteux: “Adaptation of Quad-
ric Metric Simplification to MPEG-4 Animated Object”,
Proceedings of PCM, LNCS vol. 3767, p. 49-60, Springer,
November 2005.
[19] A. Said and A. Pearlman: “A New, Fast and Efficient
Image Codec Based on Set Partitioning in Hierarchical
Trees”, Transactions on Circuits and Systems for Video
Technology, vol. 6, nr. 3, p. 243-250, IEEE, June 1996.
[20] N. Tack, F. Morán, G. Lafruit and R. Lauwereins: “3D
Graphics Rendering Time Modeling and Control for Mobile
Terminals”, Proceedings of Web3D Symposium, p. 109-117,
ACM, April 2004.
[21] K. Tack, G. Lafruit, F. Catthoor and R. Lauwereins:
“Eliminating CPU Overhead for On-the-fly Content Adapta-
tion with MPEG-4 Wavelet Subdivision Surfaces”, Transac-
tions on Consumer Electronics, vol. 52, nr. 2, p. 559-565,
IEEE , May 2006.
[22] K. Tack, G. Lafruit, F. Catthoor and R. Lauwereins:
“Platform Independent Optimisation of Multi-Resolution 3D
Content to Enable Universal Media Access”, The Visual
Computer, vol. 22, nr. 8, p. 577-590, Springer, August 2006.
[23] M. Wimmer and P. Wonka: “Rendering Time Estima-
tion for Real-Time Rendering”, Proceedings of Eurographics
Symposium on Rendering, p. 118-129, June 2003.

http://gpac.sourceforge.net/

		1. Introduction

		2. Standard scalable 4D content

		2.1. 3D geometry

		2.1.1. Geometry quality/bit-rate/memory trade-off. Once a 3D

		2.1.2. Geometry quality/bit-rate/execution time trade-off. T

		2.2. 2D textures

		2.2.1 Geometry + 2D texture quality/bit-rate trade-off. Besi

		2.3. Animation

		2.3.1. Animation quality/bit-rate trade-off. To represent co

		2.4. Complete 4D scene exporting in MPEG�4

		3. Servers, network and terminals

		4. Conclusions

		5. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [595.276 841.890]
>> setpagedevice

