
Adaptive 3D Content for Multi-Platform On-Line Games

Francisco Morán1, Marius Preda2, Gauthier Lafruit3, Paulo Villegas4 and Robert-Paul Berretty5

1 Universidad Politécnica de Madrid, ES 2 Institut National des Télécommunications, FR
3 Interuniversitair Micro Electronica Centrum, BE 4 Telefónica I+D, ES 5 Philips, NL
1 Francisco.Moran@upm.es 2 Marius.Preda@int-evry.fr 3 Gauthier.Lafruit@imec.be

4 Paulo@tid.es 5 Robert-Paul.Berretty@philips.com

Abstract

Most current multi-player 3D games can only be
played on dedicated platforms, requiring specifically
designed content and communication over a prede-
fined network. To overcome these limitations, the
OLGA (On-Line GAming) consortium has devised a
framework to develop distributive, multi-player 3D
games. Scalability at the level of content, platforms
and networks is exploited to achieve the best trade-
offs between complexity and quality. Besides, stan-
dardized content compression formats (MPEG-4,
JPEG 2000) are used in OLGA’s framework, enabling
easy deployment over existing infrastructure, while
keeping hooks to well-established practices in the
game industry.

1. Introduction

OLGA (www.ist-olga.org) is the short name of a
research project partially funded, from April 2004 to
September 2006, by the European Commission under
FP6-IST (cordis.europa.eu/ist). Its full name is “A
unified scalable framework for On-Line GAming”, as
its ultimate goal is to provide a framework for devel-
oping scalable 4D (animated 3D) game content that
could be adaptively streamed to a variety of terminals
over heterogeneous networks; and to do so by using
(and improving, whenever possible) de jure interna-
tional standard coding formats such as MPEG-4 AFX
(Animated Framework eXtension) [8].

Thanks to OLGA’s scalable 4D content authoring
and compression tools, it is possible to render the
same textured 4D content at wildly different qualities
and frame rates, according to each network and termi-
nal profile. Figure 1 gives an idea of how OLGA’s
game test bed, named GOAL, runs on a PC (Personal
Computer) and a CP (Cell Phone). We decided as well
to enable the players to publish their own 4D content
for its use in the game: OLGA’s tools are not only
provided to game designers, but also to end users.

Figure 1. Screen shots from both the PC and CP
versions of GOAL, OLGA’s game.

Section 2 elaborates on OLGA’s tools and ex-
plains how scalable coding can be exploited for adapt-
ing the execution time in a specific terminal, under
excellent quality vs. bit-rate vs. memory vs. execution
time trade-offs of the 3D geometry, textures and ani-
mation. But OLGA’s mission was not only producing
scalable 4D content authoring and compression tools.
Another two of its main goals were to deploy a scal-
able game platform (an infrastructure consisting of
both servers and network) that would adapt content in
a distributed way, and to provide a set of terminals to
validate OLGA’s technology by implementing GOAL
on them. Sections 3 and 4 comment on how those
other OLGA targets were achieved. Finally, Section 5
concludes our presentation.

2. Standard scalable 4D content

A few years ago, high quality 3D graphics were a
crucial asset for making a computer game successful.
Nowadays, they are practically taken for granted: for
current players, 4D content looking great is not a bo-
nus but nearly a must. And creating compelling 4D
objects and characters is a very time-consuming task
even when that content is not scalable.

A key ingredient of OLGA is its software toolset
for content creation, conversion and compression,
which provides game designers, as well as end users,
with flexible solutions to create scalable 4D content
from scratch, or to recycle already existing 4D content
to have it be scalable, and to compress it efficiently.
Scalable (off-line) coding is of the utmost importance
for OLGA to enable the continuous adaptation (at run-
time, under constrained system resources) of the 4D
content parameters, so that the best trade-off between
instantaneous 3D rendering quality and animation
speed can be achieved. Such adaptation is possible
thanks to progressive bit-streams that can be stripped
through packet selection mechanisms for view-
dependent decoding (or even streaming) scenarios, in
which only the visible portions of a 3D object geome-
try and texture are transmitted and decoded at the
appropriate quality. The animation quality can also be
scaled by performing only those transformations yield-
ing a visible effect for the player.

Another key ingredient of OLGA, besides scal-
ability, was compliance to the maximum possible ex-
tent to international standards. MPEG-4 was chosen
because it already featured the following tools for
scalable 4D content when OLGA started:
• 3D geometry (see Section 2.1): among the several

tools targeting the compression of polygonal meshes
in MPEG-4 AFX, we chose the one based on WSSs
(Wavelet Subdivision Surfaces).

• 2D textures (see Section 2.2): both MPEG-4’s na-
tive format for textures, VTC (Visual Texture Cod-
ing), and JPEG 2000 are also wavelet-based. We
chose JPEG 2000, but made sure MPEG-4 would
support it.

• Animation (see Section 2.3): BBA (Bone-Based
Animation) is a sub-toolset of MPEG-4 AFX per-
mitting to animate generic articulated characters
based on the “skeleton and skin” paradigm.

2.1. 3D geometry

Several 3ds Max plug-ins were implemented to
enable an artist to automatically simplify an arbitrary
connectivity 3D mesh, remesh it to have subdivision
connectivity (see Figure 2), and code it in a scalable
manner:
• Our 3D mesh simplification plug-in for 3ds Max,

olgaQAttSimp, is based on the QEM (Quadric Error
Metrics) technique [4] and yields significant im-
provements over 3ds Max’s native Optimize: the
geometry obtained is much more efficient (in terms
of triangle count for a given approximation error)
and the texture coordinates are correctly handled.
Compared to the MultiRes modifier that comes also

standard with the newer versions of 3ds Max, ol-
gaQAttSimp is very efficient when it comes to
smooth content, and roughly equivalent for “not-
well-rounded” shapes. But, in all cases, it allows the
artist to control more closely the mesh decimation
and obtain more subjectively faithful final results by
selecting certain regions to be preserved. A simpli-
ficator software module has also been developed
based on olgaQAttSimp, and integrated in the LCSs
(Local Content Servers: see Section 3) to allow run-
time vertex removal.

Figure 2. An arbitrary connectivity mesh (left)
modeled as a WSS after base mesh extraction (middle)
and remeshing with subdivision connectivity (right).

• The coding can comply to the WSS tool already in
MPEG-4 AFX, a.k.a. “WaveSurf” [9], or follow the
PLTW (Progressive Lower Trees of Wavelet coeffi-
cients) technique [1], explained below and proposed
to MPEG for its adoption in a future Amendment of
AFX. The two corresponding decoders (PLTW-
based and MPEG-4-compliant) are both integrated
in OLGA’s software framework for the PC plat-
form. As for the CP platform, only the PLTW-based
decoder has been ported to Symbian OS, since it has
less memory requirements than WaveSurf.

2.1.1. Geometry quality/bit-rate/memory trade-off
Once a 3D shape is modeled as a WSS, it is fit for
multi-resolution coding. Our research in this field
focused on new methods that could be more suitable
for resource-limited devices than the SPIHT-based
ones, like the WaveSurf tool. For a decade already, the
SPIHT (Set Partitioning In Hierarchical Trees) tech-
nique has been the reference against which to compare
other coding techniques based on the wavelet trans-
form. The problem of SPIHT is that, although its bit-
streams are SNR scalable, they are not spatially scal-
able, and cannot be easily parsed according to a given
maximum resolution (i.e., number of pixels or trian-
gles) or LOD (Level Of Detail) tolerated by the de-
coder. There is little point in encoding a 3D mesh with

thousands of triangles if the CP that must render it can
barely handle hundreds. Furthermore, from the mem-
ory viewpoint, having a perfectly SNR scalable bit-
stream that may have bits corresponding to details of
LOD 3 before those of LOD 1 makes also little sense,
as the decoding process alone will completely eat up
all the CP resources: even if memory is not allocated
for the triangles of LOD 3 (which will never be ren-
dered), their detail trees must be created to follow the
SPIHT algorithm.

The main novelty of the PLTW technique [1] is
that the resulting bit-stream does not impose on the
less powerful decoders the need of building detail
trees as deep as required by the maximum LOD en-
coded, because the wavelet coefficients are sent on a
per-LOD basis, thus achieving “local SNR scalability”
within “global spatial scalability”. With PLTW, the set
of coefficients is also hierarchically traversed, but they
are scanned in LODs, which yields a spatially scalable
bit-stream. The decoder first receives all the coeffi-
cients corresponding to a LOD and, only when it has
finished reading them, it proceeds (if it has enough
resources) with those from the next. However, thanks
to bit-plane encoding, bits from each LOD are ordered
in such a way that the first to arrive are the ones that
contribute more to lower the reconstruction error,
while bits from negligible coefficients arrive last.

A comparison of our PLTW coder vs. two other
SPIHT-based coders is illustrated by Figure 3, which
plots, for two different 3D models, the rate distortion
curves for: i) our PLTW coder, which does include
AC (Arithmetic Coding) as a final step; ii) a version of
the SPIHT algorithm with AC; and iii) the WaveSurf
tool of MPEG-4, which also uses SPIHT, but without
AC. Except at very low rates, where PLTW is still
reconstructing upper LODs and does not benefit from
the smoothing effect of subdivision (while its competi-
tors do), PLTW always results in higher PSNRs for
the same bit-rate. It is also noticeable how none of the
SPIHT-based coders is able to reach the same PSNR
as the PLTW coder even employing 160%
(SPIHT-AC) or 330% (MPEG-4) of the bits used by
PLTW for the same quantization set of values. The
poor results of the WaveSurf coder are mostly due to
the overhead introduced to support view-dependent
transmission of coefficient trees.

2.1.2. Geometry quality/bit-rate/run time trade-off
The use of compressed, multi-resolution content en-
ables the adaptation of its complexity (and hence also
its visual quality) to the available bandwidth and ter-
minal resources. WSSs permit to code the shape of a
3D model in a multi-resolution manner with very good
compression, but require a large CPU overhead for a

fine-grained, on-the-fly control of the content com-
plexity in execution time regulated applications such
as networked, interactive 3D games. In fact, the CPU
overhead for controlling the execution time with
MPEG-4’s WaveSurf tool is sometimes as large as the
3D graphics rendering execution time itself.

0 2 4 6 8 10 12 14
20

30

40

50

60

70

80

bits/vertex

P
S

N
R

PLTW
SPIHT-AC
MPEG-4

0 1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

bits/vertex

P
S

N
R

PLTW
SPIHT-AC
MPEG-4

Figure 3. PLTW vs. SPIHT and MPEG-4’s WaveSurf
for the Max Planck (top) and bunny (bottom) models.

Moreover, typical implementations of WSSs mul-
tiply by four the number of triangles in every subdivi-
sion step, which enables only very discrete LOD man-
agement, and therefore yields abrupt and often dis-
turbing quality changes while only supporting coarse-
grained adaptation to a target execution time. Besides
improving the compression efficiency and the ade-
quacy to weak terminals with the PLTW technique,
we introduced some add-ons to enable a low-
complexity, yet efficient fine-grained quality/run time
trade-off in execution time control.

To achieve this target, the WSS mesh regions are
progressively decoded in a continuous LOD fashion,
by subdividing only the important regions of the ge-

ometry. The importance and order for subdividing the
triangles is given by their impact on the error to the
target mesh, i.e. the triangles that decrease this error
the most are subdivided first. These non-uniformly
subdivided meshes allow a fine-grained control of the
resolution of the geometry, resulting in small varia-
tions of the visual quality while achieving a target
execution time. With special subdivision platform
mapping techniques using LOD-based moving win-
dows [13], the complexity of the subdivision control is
largely reduced, resulting in an overhead of only a
small percentage in the final decoding and rendering
execution time for two different platforms: a high-end
PC and a low-end CP.

In order to actually steer the execution time con-
trol, the execution time, and especially the rendering
time, should be estimated for a large range of triangle
budgets. We have used previously reported perform-
ance models for the software and hardware rendering
pipelines [12], according to which the most important
parameters are the number V of processed vertices (for
the vertex processing) and the number F of fragments
(for the rasterizing); additional parameters important
for the software model are the number S of spans and
the number T of visible triangles. The coefficients of
the performance model are derived with an off-line
calibration procedure that first measures on the device
the rendering time for many different objects with
different sizes (F) and complexity (V and T), and then
computes the average values of the coefficients cα
(α ∈ {T, F, S}) with multi-linear regression analysis.

2.2. 2D textures

After carrying out a preliminary comparative
study between JPEG, JPEG 2000 [5] and MPEG-4’s
VTC [7] with respect to the considered criteria and
desired functionalities within OLGA, the JPEG 2000
technology was selected, and several tools developed:
• A plug-in enables 3ds Max to import and export

JPEG 2000-compliant textures (at the time of writ-
ing, the last version of 3ds Max, nr. 9, did not sup-
port natively JPEG 2000 yet).

• Tools enabling view-dependent texture streaming
thanks to JPEG 2000 and JPIP (JPEG 2000 Internet
Protocol), in which a bit-stream packet selection
mechanism takes the user’s viewpoint information
into account. Implementations were made for both
PC and CP, and both the JPEG 2000 and JPIP de-
coders were optimized towards their usage in a 3D
graphics texture context, and extended with addi-
tional control tools tailored to a view-dependent tex-
ture streaming scenario. The JPIP cache mechanism
is adapted to minimize the CP memory usage.

• A JPEG 2000 bit-stream packet selector has been
integrated in the simplificator module running on
LCSs (see Section 3), that supports resolution scal-
ing and bit-plane removal. The LOD selection takes
into account both the available bandwidth between
LCS and terminal, and the terminal screen resolu-
tion.

But OLGA’s most important contribution with re-
spect to textures has little to do with JPEG 2000 (ex-
cept for having succeeded at having MPEG-4 support
it as one of its native image formats), as in fact the
work described above mostly consisted in implement-
ing and porting already existing algorithms and soft-
ware. At least conceptually, OLGA’s main contribu-
tion was detecting drawbacks in the current IFS (In-
dexed Face Set) tool of MPEG-4, inherited from
VRML97, and defining the so-called “IFS++” format
for 4D meshes with enriched vertex attributes such as
multiple texture coordinates and bone-vertex influence
coefficients. This activity led to another MPEG pro-
posal, which will hopefully be included as well in a
future AFX Amendment.

2.2.1. Geometry+texture quality/bit-rate trade-off
Besides the execution time variation with the platform
and content parameters [12], the linearity of the cost
with the object parameters was also observed in the
bit-rate of the textured MPEG-4 objects: with a re-
gression coefficient of 93% measured over 60 objects,
the original MPEG-4 file size s decreases roughly bi-
linearly with the JPEG 2000 texture LOD (with nega-
tive slope m1) and the object mesh LOD (with nega-
tive slope m2). Small file sizes s with large (absolute
values of) m1 and m2 correspond to small bit-rates that
decrease very rapidly with decreasing LOD: the corre-
sponding objects representing only a small fraction of
the total bit-rate at all LOD levels, they have low pri-
ority to be scaled for global (over all objects) bit-rate
adaptation. On the other extreme, large s with small
m1 and m2 correspond to large bit-rates that decrease
very slowly with decreasing LOD, hence representing
barely any opportunity of down-scaling for global bit-
rate adaptation. Consequently, large s with large m1
and/or m2 are the most appealing candidates for bit-
rate adaptations: starting from a large full resolution
bit-rate contribution, they scale very well by adjusting
the texture and/or mesh LOD.

Together with the improvements introduced by
the geometry and animation coding tools, a global
quality/bit-rate/execution time control can be obtained
over all objects. The details of this intelligent global
adaptation are beyond the scope of this paper, since it
mainly consists in finding heuristics for approximately
solving an NP-hard knapsack problem [3].

2.3. Animation

Virtual characters are the most complex objects in
a 3D game, and OLGA’s main vision, using scalable
content within a standardized framework, was also
applied to them. We used as a basis the BBA (Bone-
Based Animation) specification [10], a subset of
MPEG-4 AFX defining a framework for representing
and animating skinned models. On top of the generic
compression used for the object and scene graphs,
which is based on MPEG-4 BIFS (BInary Format for
Scenes) [6], BBA defines a compressed representation
of the animation parameters: bone transforms, muscle
deformations and morphing weights.

2.3.1. Animation quality/bit-rate trade-off
To represent compactly the data required by the ani-
mation of textured 3D models (varying vertex attrib-
utes: essentially spatial coordinates but also normals
or texture coordinates), some kind of redundancy in
the animation is usually exploited: either temporal,
and then linear or higher order interpolation is used to
obtain the value of the desired attribute between its
sampled value at certain key frames; or spatial, and
then nearby vertices are clustered and a unique value
or transform is assigned to each cluster. MPEG stan-
dardized an approach for compression of generic in-
terpolated data [6], able to represent coordinates and
normal interpolation. While generic, this approach
does not exploit the spatial redundancy. Concerning
avatar animation, one of the most used animation con-
tent for games, a subset of MPEG-4 named FBA (Face
and Body Animation) [7] allows compression at very
low bit-rates. However, FBA imposes a rigid defini-
tion of the avatar and the difficulty to set up the pro-
posed deformation model. At the time the OLGA pro-
ject started, we were in the final stage of standardizing
BBA, an extension of FBA within MPEG-4 AFX.

BBA allows to represent animated, generic 3D
objects based on the skin and bones paradigm, and to
transmit the animation data at very low bit-rates by
exploiting both the temporal and spatial redundancies
of the animation signal. Within OLGA, we addressed
the terminal/network adaptation, compression and
rendering of BBA-based content. We considered the
adaptation of animated content at two levels: geometry
simplification constrained by dynamic behavior [11]
and animation frame reduction. The dynamic behavior
was expressed as constraints used to parameterize the
QEM technique [4]. We introduced a weighting factor
to specify how a given set of bones influences the
simplification procedure. The biomechanical charac-
teristics (i.e., the relationships between skin and
bones) were directly exploited to constrain and control

the simplification procedure. We applied the devel-
oped algorithm to OLGA animated objects, previously
converted into MPEG-4-compliant skinned models.
Figure 4 shows the comparative results of animated
model simplification for the developed approach,
called AC-QEM, vs. plain QEM.

QEM-simplified model
(491 vertices)

AC-QEM-simplified model
(497 vertices)

Figure 4. AC-QEM vs. QEM:
qualitative results for the dragon model.

Decoding and rendering animation data on small
memory devices such as CPs requires server-side ani-
mation adaptation. Our approach was to reduce the
number of the animation key frames so that the CP
must only store a small quantity of information and
use temporal interpolation. Animation simplification
based on frame reduction was achieved by considering
a progressive approach. Given an original animation
sequence of n frames, to obtain a simplified sequence
with m < n frames approximating the original curve,
the area between the original curve and the recon-
structed one must be minimized. Considering this
condition for all bones (or the subset of extreme
bones), the optimization problem becomes difficult to
solve. To overcome the complexity, we adopted an
incremental approach: for each pair of three frames
and for each extreme bone, we compute the area be-
tween the original signal and the one reconstructed by
linear interpolation. We sum these areas for all ex-
treme bones and the minimum of the sums indicates
the frame that has to be removed. We repeat the algo-
rithm until the number of removed frames equals n –
 m. After frame reduction, a new BBA stream is ob-
tained by encoding the m frames, and indicating for
each frame the number of intermediate frames to be
obtained by interpolation on the terminal.

2.4. Complete 4D scene exporting in MPEG-4

Finally, three 3ds Max plug-ins have been re-
leased that are able to export whole scenes containing
several 4D objects: the first exports fully MPEG-4-

compliant textual (*.xmt) and binary (*.mp4) files; the
second exports MPEG-4-compliant textual (*.txt) for
animated characters: object graph definition and ani-
mation data; and the third outputs bit-streams that are
not yet fully MPEG-4-compliant in that they follow
OLGA’s IFS++ format and the PLTW-based coding
of WSSs if the user so wishes.

3. Servers and network

The work related to servers and networks com-
prised the design, development and testing activities
for the integration of the game test bed versions with
the various versions of the network architecture. Both
the PC and CP clients communicate and authenticate
with a central lobby server, which manages a distrib-
uted network of game logic servers, called ZGSs
(Zone Game Servers), and content adaptation and
delivery servers, called LCSs (Local Content Servers),
as opposed to the GCS (Global Content Server),
which is a centralized resource, like the lobby server.

Figure 5. Network architecture.

Figure 5 illustrates OLGA’s network architecture,
and the conceptual decoupling of the game network
and the content delivery network. Load balancing and
recovery mechanisms for these distributed networks of
servers were implemented and successfully tested. The
ZGSs have basic gaming functionality and can handle
both player avatars and non-player characters, and
both static and dynamic content. Instead of using a
completely centralized solution, or one with a grid of
homogeneous servers, we decided to have many het-
erogeneous ZGSs and LCSs, potentially hosted at the
most powerful PCs of the players themselves. This
allows a high degree of network scalability against the
number of clients.

3.1. Content delivery network

Sending or updating game content (i.e., objects to
be rendered) over the network is not a frequently used

option, although multi-player on-line games pushing
content through the network instead of locally storing
all data do exist. However, most of these games re-
duce a priori the transmission bandwidth by subdivid-
ing the world in sub-worlds (3D tiles) and referencing
pre-stored items, and texture data is seldom transmit-
ted. We chose instead to enable live update, distribu-
tion and adaptation of content.

This adaptation requires extensive CPU power
and memory. It is not practical to serve dynamically
rendered content using a pure client-server architec-
ture, and that is why the P2P (Peer-to-Peer) model was
chosen. The final key features of OLGA’s content
delivery network are:
• The system works through very heterogeneous

networks and terminals, from high-end 3D graphic
PCs connected to broadband Internet to mobile
handsets connecting through 3G networks, all si-
multaneously active in the same game, and inter-
acting with each other.

• The LCSs are not passive distribution nodes: on
the contrary, they actively adapt the content to the
client characteristics before delivery. Adaptation is
done through the set of simplification tools de-
scribed in Section 2, and the LCSs cache the result
of simplifications to save processing effort.

Lobby
Server GCS

• A content adaptation server is installed on every
client PC, and may be called upon dynamically by
the Lobby Server to act as an LCS, depending on
system conditions.

• The amount of available content in the game is vari-
able, and can be updated from all nodes in the net-
work. Any game client can create its own content
(in standard formats) and insert it into the game in
real time, by uploading it to the GCS and using the
ZGS to add a reference to the new content in the
game; other players will download the content from
their LCS as needed by game information provided
by the ZGS.

Given the P2P properties of the content delivery
network, some scalability is inherent to it: new clients
entering the game also bring new servers, thus level-
ing the capacity of the network. However, as playing
the game makes the clients behave unpredictably from
the point of view of content requests, a means of en-
suring dynamic adaptation to changing conditions is
necessary and was implemented, although it is out of
the scope of the present paper.

4. Multi-platform 3D rendering

As for the terminals, OLGA supports a variety of
them, which were used within the project to test and

•••

••• •••
•••••• Game

client

LCS LCS

LCS

ZGS

ZGS
Content
Delivery
Network

Game
Network

•••

validate the scalability of game content. The main
focus was on the realm of PCs, ranging from high-end
gaming ones to laptops, but also mobile terminals
were used. Two software platforms were produced:
• GOAL, our game test bed, is available both on MS-

Windows-based PCs and on CPs running Sym-
bian OS v8 and supporting J2ME, notably the
Nokia 6630. Game logic was implemented on both
versions of the game, and decoders integrated for
the simplified content downloaded from the net-
work. For the CP, a part of the software is pro-
grammed in Java, and the content decoders are pro-
grammed in Symbian, the Symbian framework be-
ing connected through a socket with the Java game
engine. Rendering of the final graphics is done in
software on the ARM embedded in the OMAP
processor of the Nokia 6630. For screen shots of
GOAL on both types of terminals, see Figure 1.

Figure 6. OLGA models loaded in the PC (top) and

CP (bottom) versions of the MPEG-4 player.

• Besides, we developed a stand-alone MPEG-4
player to visualize textured 4D content on both PCs
and CPs: see Figure 6. We selected a small number
of the scene graph nodes defined in the BIFS speci-
fication, which is enough to represent static and
animated textured 3D objects. Then, starting from
an open source BIFS decoder named GPAC
(gpac.sourceforge.net), we derived a simplified
BIFS decoder by implementing just the selected
nodes. To allow texture mapping, we plugged in
both JPEG and JPEG 2000 decoders and, to support
animation, we optimized the initial BBA decoder we
had developed for PC and also ported it to Sym-

bian OS v8. Finally, we developed the rendering
layer by using DirectX 9 for PC and OpenGL ES for
CP.

4.1. 3D displays

Special attention was given to the final rendering
of 3D gaming content. Nowadays, new terminal and
display developments drive new applications such as
real 3D viewing. It is possible to design lenticular
sheets to turn a flat, 2D matrix display into an auto-
stereoscopic multi-view display able to present the
viewer with different images from various slightly
different viewing angles. A format highly suitable for
content transmission for such multi-view displays is
video enriched with depth information. The format
allows for minor displacements of foreground objects
with respect to background scenery that are needed to
present the viewer with the required different im-
ages [2].

Figure 7. GOAL screen shot:
image and depth buffers (left), and actual image on

auto-stereoscopic 3D display (right).

To make the game experience more immersive,
we endowed some terminals with such auto-stereosco-
pic 3D displays. Although, in theory, multiple images
from different viewpoints can be rendered individually
on the device, this solution is not optimal. From both
the bandwidth and computational complexity points of
view, it is desirable to render only one viewpoint and
provide the depths of the pixels in the computed view
to the display. Subsequently, a dedicated processor in
the display can render the desired viewpoints at high
quality [2]. In the GOAL terminals, we adopted the
latter approach, and provide the depth information that
is available in the z-buffer of the GPU to the 3D dis-
play. Therefore, the 3D content is transferred through
the OLGA framework to the device, subsequently
used to render the scene according to the current game
status. Next, the frame and depth information are
transferred to the 3D display, which renders the final
scene in multi-view 3D, as suggested by Figure 7.

5. Conclusions

Today’s multi-player 3D games often rely on
dedicated/ proprietary technological solutions for their
servers (e.g., massively parallel, brute-force grid com-
puting), and scale down content a priori, according to
the bandwidth or rendering power of the “weakest”
node in the infrastructure. The OLGA (On-Line GAm-
ing) consortium opted for a completely different para-
digm: exploiting the scalability at the level of content,
platforms and networks, possibly adapting the content,
network and processing load to the distributive re-
sources available over the end-to-end delivery chain.
OLGA’s 4D (animated 3D) content is not stored lo-
cally on one single server or local storage medium
(e.g., DVD), but is rather distributed over a multitude
of servers spread all over the network with adequate
load-balancing and fault-tolerance policies, and possi-
bly hosted at the most powerful PCs of the players
themselves!

The 4D content is actively pushed from the avail-
able servers to the gaming terminals but, since
OLGA’s 4D content authoring and compression tools
are provided to end users as well as to game designers,
the players can develop and publish their own content,
which then becomes part of the persistent world, and
benefits from OLGA’s standardized framework for
adapting scalable content to the varying processing
and bandwidth capacities of a heterogeneous infra-
structure, and to the very different rendering power of
heterogeneous terminals. OLGA’s 4D content author-
ing and compression tools do not impose constraints
on the content complexity: game developers and play-
ers are free in their creativity, and OLGA’s tools take
care to adapt to any circumstances — not the other
way around, as is usually the case…

We managed to integrate a chain of content con-
version, transmission and rendering technologies into
a heterogeneous infrastructure and terminal set, dem-
onstrating real-time interactive 4D content adaptation.
We developed a distributive multi-player 4D game
but, more importantly, we developed a framework to
develop distributive multi-player 4D games, or other
multimedia applications with heavy and highly vari-
able bandwidth and rendering requirements. And our
framework hooks to a complete toolkit of standardized
content representation/compression formats (MPEG-4,
JPEG 2000), enabling easy deployment over existing
infrastructure, while not impeding well-established
practices in the game development industry.

6. References

[1] M. Avilés, F. Morán and N. García: “Progressive
Lower Trees of Wavelet Coefficients: Efficient Spatial and
SNR Scalable Coding of 3D Models”, Proc. Pacific-rim
Conf. on Multimedia, Springer LNCS vol. 3767, p. 61-72,
November 2005.
[2] R.-P. M. Berretty, F. J. Peters and G. T. G. Volleberg:
“Real Time Rendering for Multiview Autostereoscopic
Displays”, Proc. Stereoscopic Displays and Applications
Conference, SPIE vol. 6055, p. 208-219, January 2006.
[3] J. Bormans, N. Pham Ngoc, G. Deconinck and G.
Lafruit: “Terminal QoS: Advanced Resource Management
for Cost Effective Multimedia Applications”, chapter
(p. 183-201) of “Ambient Intelligence: Impact on Embedded
System Design”, Kluwer, 2003.
[4] M. Garland and P. S. Heckbert, “Surface Simplifica-
tion Using Quadric Error Metrics”, Proc. ACM SIGGRAPH,
p. 209-216, August 1997.
[5] ISO/IEC JTC1/SC29/WG1, a.k.a. JPEG (Joint Photo-
graphic Experts Group): “Standard 15444-1”, a.k.a.
“JPEG 2000 Part 1: Core coding system”, 2004.
[6] ISO/IEC JTC1/SC29/WG11, a.k.a. MPEG (Moving
Picture Experts Group): “Standard 14496-1”, a.k.a.
“MPEG-4 Part 1: Systems”, 1999.
[7] ISO/IEC JTC1/SC29/WG11: “Standard 14496-2”,
a.k.a. “MPEG-4 Part 2: Visual”, 1999.
[8] ISO/IEC JTC1/SC29/WG11: “Standard 14496-16”,
a.k.a. “MPEG-4 Part 16: Animation Framework eXtension
(AFX)”, 2004.
[9] F. Morán and N. García: “Comparison of Wavelet-
Based 3D Model Coding Techniques”, IEEE Tr. Circuits
and Systems for Video Technology, vol. 14-7, p. 937-949,
July 2004.
[10] M. Preda and F. Prêteux: “Virtual Character within
MPEG-4 AFX”, IEEE Tr. Circuits and Systems for Video
Technology, vol. 14-7, p. 975-988, July 2004.
[11] M. Preda, S. Tran and F. Prêteux: “Adaptation of
Quadric Metric Simplification to MPEG-4 Animated Ob-
ject”, Proc. Pacific-rim Conf. on Multimedia, Springer
LNCS vol. 3767, p. 49-60, November 2005.
[12] N. Tack, F. Morán, G. Lafruit and R. Lauwereins: “3D
Graphics Rendering Time Modeling and Control for Mobile
Terminals”, Proc. ACM Web3D Symposium, p. 109-117,
April 2004.
[13] K. Tack, G. Lafruit, F. Catthoor and R. Lauwereins:
“Eliminating CPU Overhead for On-the-fly Content Adapta-
tion with MPEG-4 Wavelet Subdivision Surfaces”, IEEE Tr.
Consumer Electronics, vol. 52-2, p. 559-565, May 2006.

