

Ibero-American Symposium on Computer Graphics - SIACG (2006)
P. Brunet, N. Correia, and G. Baranoski (Editors)

Realistic depth of field effects with OpenGL

Daniel Berjón1 and Francisco Morán2

berjon@dit.upm.es, fmb@gti.ssr.upm.es
1Grupo de Sistemas de Tiempo Real, Depto. de Ingeniería de Sistemas Telemáticos

2Grupo de Tratamiento de Imágenes, Depto. de Señales, Sistemas y Radiocomunicaciones

E.T.S. de Ingenieros de Telecomunicación
Universidad Politécnica de Madrid

E-28040 Madrid, Spain

Abstract
This paper describes a general method for simulating realistic depth of field effects by first projecting a 3D scene
with OpenGL and then performing a defocusing step through a simple local averaging filter. OpenGL yields
perfectly focused images which are not realistic, but is efficient (especially if hardware acceleration is available)
and provides, through the depth-buffer, information on how distant the 3D point projected on each pixel of the
frame-buffer was from the camera. Thanks to this information, we know how much we must defocus each pixel,
whose colour we spread over a circle of confusion surrounding it.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture

1. Introduction

OpenGL [SWND06] uses a simple projection model which
transforms points in a 3D space into points located on the
projection plane on a one-to-one basis. This model, although
mathematically simple, is not adequate to obtain realistic im-
ages, for every object in the scene remains focused indepen-
dently of its distance from the camera. No real device can
produce completely sharp images since every photosensi-
tive device, be it analog or digital, needs some luminous en-
ergy in order to work. The OpenGL projection model would
be equivalent to a pin-hole camera with an infinitely small
orifice, which would therefore only let in an infinitesimal
amount of light, hence needing an infinite exposure period,
all of which is far from realistic.

All practical camera-like devices, including eyes, adopt a
different strategy: they let light in through a relatively large
aperture in order to increase the amount of energy reaching
the sensor, but to do so they must use a lens to focus the
luminous rays onto the projection surface. This comes at a
price: only objects which are an exact distance away from

the camera are strictly focused, all other objects being more
or less out of focus.

In this paper we will discuss the optical thin lens model
as a more accurate yet relatively simple model of a real cam-
era and will show how it can be implemented as a linear
non-invariant post-processing filter for OpenGL 3D render-
ing programs.

2. Thin lens model

Throughout this paper we will assume that we are trying to
simulate the optical model known as thin lens model [Tip95],
which means that we are dealing with a single lens whose
thickness is negligible compared to its focal lengh. This
allows to make some minor mathematical simplifications
which ease calculations without introducing too much error.
We will assume also that there are no second-order effects
such as spherical and chromatic aberrations or coma, since
that would add unnecesary complexity to our analysis. In
fact, every good photographic lens tries to banish these ef-
fects. Why would we want to simulate a bad photographic
lens?

c© The Eurographics Association 2006.

D. Berjón & F. Morán / Realistic depth of field effects with OpenGL

Since we are not trying to make a physical simulation but
rather an emulation of the results, we do not need to know
physical parameters of the lens such as its refraction index
or the curvature of its surfaces. We only need to know its
focal distance. Knowing the focal distance, it is easy to cal-
culate where all the rays coming from a point in space will
converge, thanks to the thin lens equation:

1
S1

+
1
S2

=
1
f

(1)

The most relevant meaning of this equation is that if we
set an object at a distance S1 in front of a lens with focal
distance f , every point will converge in another point located
at a distance S2 behind the lens, provided that both S1 and S2
are greater than f .

Although this is all we need to know whether an object
will be focused in any particular scene, we also want to know
how other points at any other distances will project onto the
projection plane.

Figure 1: Geometrical ray-tracing method for a thin lens

Figure 1 shows how each ray passing through the lens be-
haves. For any arbitrary point at any distance of the lens, ev-
ery ray will lay within the segment defined by the projections
of the two rays passing through both ends of the lens. Since
what is shown in the figure is just any longitudinal section, it
is easily seen that every non-focused point in 3D space will
turn into a circular spot –in fact, the same shape as the lens–,
usually known as circle of confusion. This spot lies on the
projection plane and its size depends on the distance of the
corresponding 3D point from the lens.

Figure 2 shows trajectories of rays coming from an arbi-
trary point and how we can determine the size of any circle
of confusion. The y coordinate for the main ray, which is the
only ray that OpenGL computes, is:

yP′ = −s · tan(α) (2)

Figure 2: Analysis of the size of the circle of confusion

And y coordinates for rays passing through both ends of
the lens are:

yP′′ =
a−d·tan(α)

d · f −a
f

· s+a (3)

yP′′′ =
− a−d·tan(α)

d · f +a
f

· s−a (4)

Operating and simplifying, we find that the radius of the
circle of confusion does not depend on the angle α but only
on the distance from the point to the lens:

|yP′ − yP′′ | = |yP′ − yP′′′ | = |a · [s · (1
f
− 1

d
)−1]| (5)

radius(d) =

∣

∣

∣

∣

a

[

s

(

1

f
−

1

d

)

− 1

]∣

∣

∣

∣

Figure 3: Radius of the circle of confusion vs. distance

Figure 3 shows how the radius of the circle of confusion
varies as a function of distance to the lens. Strictly speaking,
only the points at a specific distance are focused; however,
points whose circle of confusion radius is below the resolu-
tion of the representation system are indistinguishable from

c© The Eurographics Association 2006.

D. Berjón & F. Morán / Realistic depth of field effects with OpenGL

truly focused points. This phenomenon is usually known by
photographers as depth of field.

3. Implementation as a linear filter

An implementation as a kind of Monte Carlo simulation has
been proposed by the authors of the official OpenGL pro-
gramming guide [SWND06] consisting in taking many im-
ages of the scene from points chosen over the cross-section
of the lens with slightly different projection volumes, so that
every point not in focus will have a different parallax de-
pending on its distance to the viewpoint. The final image is
calculated as an average of all of these images.

Although this approach is theoretically valid and it can be
shown that it is optically equivalent to the thin lens model,
we feel that it is inadequate to truly simulate the continuous
nature of circles of confusion. As figure 3 shows, circles of
confusion of points near the camera can be very large. Using
this method, each image contributes with just one pixel for
each point in space, so completely covering a big circle may
require thousands of images, which is not very practical. In
the vast majority of cases, this method yields a result more
like a diffusion filter than like a truly unfocused image.

We have shown how every point in space turns into a cir-
cle on the projection plane whose centre is the point where
the main ray intersects the projection plane. Since OpenGL
calculates exactly that, just the main rays projections, we can
understand the defocusing process as a post-processing filter
to be applied onto the original image in which each point has
its own associated point spread function (PSF) or impulse
response.

Therefore the final image would be calculated as the sum
of all the convolutions of each original point with its associ-
ated impulse response. For this to be physically accurate, the
photosensitive sensor, be it chemical or electronic, should
have a linear response, which is approximately true in the
usual range of utilisation of such devices: every photogra-
pher knows that identical exposure can be obtained doubling
the shutter time and closing the diaphragm one f-stop.

Since not every point in our original image will be con-
volved with the same impulse response (i.e. the filter is non
space-invariant), we cannot resort to frequency filtering and
we must perform true convolutions for every point.

3.1. Implementation

For the time being, we have implemented this as a sequential
program run on the CPU, but we plan for the near future to
implement it as a parallel fragment-shader to be run on the
graphics adapter GPU, which will be much more efficient
as it will eliminate the need to dump the frame- and depth-
buffers onto main memory and back.

3.1.1. Obtaining distances to the lens

Fortunately, OpenGL uses and stores this very information
to perform occlusion tests in the Z-buffer, so we can eas-
ily dump it onto main memory. OpenGL stores distances
as floating-point normalized values. The near clipping plane
maps to 0.0 and the far clipping plane maps to 1.0, but this
mapping is not linear, so we need to denormalize it following
the equation:

d =
znorm · (z f ar − znear)+ znear · z f ar

z f ar
(6)

3.1.2. Drawing circles of confusion

The simplest algorithm to draw a circle around a given pixel
is to consider that every pixel whose distance from the cen-
tre is less than the radius belongs to it, and every pixel whose
distance is greater does not. This is quite inefficient but can
be improved at little cost. We need only consider pixels be-
longing to a bounding box, or bounding square, more pre-
cisely, which should be all those whose vertical and hori-
zontal distances to the centre of the circle are both less or
equal than its radius, and since those distances can only be
integer, less or equal than the ceiling of the radius.

We are distributing the energy e contained in each original
pixel over a circle or radius r, so each pixel belonging to the
circle should have the value e/πr2. However this does not
yield really good results for two reasons.

Figure 4: Aliased circles

As it can be clearly be seen in figure 4, small variations in
the radius of the circle may result in much greater variations
of the number of pixels involved, specially in areas close to
the focusing distance which have very small circles of con-
fusion (cf. cases C and D). These variations of the number of
pixels mean not so subtle variations of luminance which are
perceived as some sort of moiré patterns. A second reason
for these moiré patterns is spectral folding. Considering that
pixels must belong entirely or not at all to the confusion cir-
cle yields circles with hard, jagged edges, which are thus not
band-limited in frequency, causing these undesirable effects.

c© The Eurographics Association 2006.

D. Berjón & F. Morán / Realistic depth of field effects with OpenGL

Generally speaking, this should be solved by oversam-
pling every pixel in the bounding square while drawing the
point spread function, whose intensity could be non con-
stant, then low-pass filtering and decimating the results. If
a pixel is subdivided (supersampled) in, e.g. 10×10 subpix-
els, each of which are tested to belong or not in a binary
way to the circle of confusion, then it is easy to calculate the
percentage of the original pixel covered by the circle by just
counting the number of covered subpixels.

Fortunately, if we are working with a piecewise constant
function as is the case we can use an adaptive supersampling
scheme as shown in figure 5. Pixels which are completely
into the circle will yield the same value no matter how hard
we try to supersample them, and the same applies to pixels
which are completely outside the circle, therefore it is only
necessary to supersample it in those pixels whose centres are
less than

√
2/2 pixel units apart from the edge of the ideal

circle.

Figure 5: Adaptive supersampling scheme for antialiasing.
Numbers indicate the percentages of pixel covering

In addition to the uniform scheme described above we
have also tried jittered sampling, an irregular scheme which
is a relatively low-cost approximation to the Poisson-disk
distribution. This distribution is found among the sparse reti-
nal cells outside the fovea and turns structured aliasing arti-
facts into random noise which is well accepted by the hu-
man visual system. Thus we should be able to use fewer
samples to obtain similar subjective image quality [Wol90].
However, experimental results have shown that in our case
the number of necessary samples is the same order of mag-
nitude. Furthermore, we have found the cost of generating
random numbers, be it using the standard C rand() func-
tion or using a higher quality generator such as the Mersenne
Twister algorithm [MN98], to be quite high and add signifi-
cant processing overhead unless using a precomputed set of
numbers.

4. Conclusions and future work

We have shown that it is possible to implement a realis-
tic defocusing algorithm with relative simplicity: we first

let OpenGL efficiently project a 3D scene onto a perfectly
(and hence, not at all realistically) focused image, which we
then defocus in a post-filtering step by distributing the en-
ergy (i.e., ’spreading the colour’) of each of its pixels over a
circle of confusion. For each pixel (i, j) of the frame-buffer,
we calculate the size of its circle of confusion thanks to the
information stored in the same (i, j) position of the depth-
buffer, which tells us how far apart from the camera the cor-
responding 3D point was and, therefore, how unfocused it
should have been.

Figure 6: Demo scene

We have found our results to be quite accurate in photo-
graphic terms in spite of the very simple optical model we
have used. However, we have also found that this algorithm
is rather CPU intensive, so in order to make it really practi-
cal we intend to port it to the Shading Language included in
OpenGL v2.0. By doing so we will spare the cost of moving
data outside the graphics adapter and we will also benefit
of the vastly superior floating-point capabilities nowadays
present in such devices.

There is also an obvious flaw present in the specular high-
lights of objects due to the clamping of color values per-
formed by OpenGL. Since the maximum permitted value for
any channel under OpenGL is 1.0, when defocusing such
a highlight the result is a much darker circle of confusion.
Real-world highlights are often so bright that even when un-
focused they remain so in relation with its surroundings. In
order to solve these issue we are also experimenting with
high dynamic range (HDR) rendering.

References

[MN98] MATSUMOTO M., NISHIMURA T.: Mersenne
twister: A 623-dimensionally equidistributed uniform
pseudorandom number generator. ACM Transactions on
Modeling and Computer Simulation (TOMACS) 8, 1 (Jan.
1998), 3–30.

[SWND06] SHREINER D., WOO M., NEIDER J., DAVIS

T.: OpenGL Programming Guide: The official guide to
learning OpenGL, version 2. Addison-Wesley, 2006.

[Tip95] TIPLER P. A.: Física, 3a edición. Ed. Reverté,
1995.

[Wol90] WOLBERG G.: Digital Image Warping. IEEE
Computer Society Press, 1990.

c© The Eurographics Association 2006.

